

A G-Polygon Based Spatial Prescreening Technique and Its Application to AIRS Data

Xin-Min Hua
GES Data Information and Service Center
NASA/Goddard Space Flight Center

Contributors: Bruce Vollmer GES DISC GSFC, Yuqi Bai GMU, Wenli Yang GMU

Introduction

- Why prescreening?
- G-polygon vs bounding box
- An accurate prescreening technique
- Its applications to AIRS data

The technique is described in A Spatial Pre-Screening Technique for Earth Observation Data, IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, January 2007 by Xin-Min Hua, Jianfu Pan, Dimitar Ouzounov, Alecei Lyapustin, Yujie Wang, Krishna Tewari, Gregory Leptoukh and Bruce Vollmer,

Why prescreening?

- EOS instruments (MODIS, AIRS) provide data granules covering large spatial areas, on the order of 1000 km.
- Many researches (e.g. comparative studies, validation by ground observations) focus on regional processes, requiring much less than full granules.
- Researchers want to know in advance if a given data granule covers the locations of interest to them.

An example: AERONET stations

Aeronet Stations

- No pre-screening: pixel-by-pixel comparison slow.
- Bounding box (Max./Min. lat/lon) inaccurate, needs special treatment for high-latitude and dateline/pole crossing granules.
- An accurate prescreening algorithm, capable of handling all data granules uniformly, regardless of their locations on the Earth, with no special treatment required for dateline/pole crossing granules. – Too good to be possible?

G-polygon vs Bounding box

Example 1: Bounding box at low latitudes

GNOMIC, Center=[90, -60]

Example 2: Bounding box at high latitudes – crossing pole, dateline

An accurate prescreening technique

Definitions and Assumptions:

- Earth surface can be approximated by a sphere.
- An AIRS/MODIS granule (6/5 minutes) covers a rectangular region (swath) on the surface of Earth approximated by 4-sided G-polygon.
- G-polygon -- polygon on a sphere with arcs of great circles as its edges.
- G-polygon divides the sphere into two domains interior and exterior.
- Define the order of vertices of a G-polygon (G-Ring sequence) as follows: when one moves in the order along the boundaries, interior is always on the right-hand-side.

G-polygon: interior and exterior

Vertices order (G-ring sequence): 1-2-3-4-1

Clockwise!

Great circle equation

 ϕ – longitude, θ – latutude Great circle equation passing through point p_1 (ϕ_1 , θ_1) and p_2 (ϕ_2 , θ_2) with a direction from p_1 to p_2 :

$$f(\phi,\theta) = \tan\theta \sin(\phi_1 - \phi_2) + \tan\theta_1 \sin(\phi_2 - \phi) + \tan\theta_2 \sin(\phi - \phi_1) = 0.$$

Great circle divides sphere into three domains:

On great circle: $f(\phi, \theta) = 0$

On right - hand - side : $f(\phi, \theta) > 0$;

On left - hand - side : $f(\phi, \theta) < 0$.

Criterion for G-polygon interior

A swath with 4 corners:

$$v_1(\phi_1,\theta_1), v_2(\phi_2,\theta_2), v_3(\phi_3,\theta_3), v_4(\phi_4,\theta_4).$$

Edges of the swath:

$$f_i(\phi, \theta) = 0, (i = 1, 2, 3, 4)$$

with $(v_1, v_2), (v_2, v_3),$
 $(v_3, v_4), (v_4, v_1)$
replacing $(p_1, p_2).$

A point (ϕ, θ) is inside swath if $f_i(\phi, \theta) > 0$ for i = 1, 2, 3, 4

Application to AIRS data

Subsetting AIRVBRAD data for 36 sites in

Coordinated Enhanced Observing Period Data Management (CEOP)

Site Lon Lat

RON -61.93 -10.08

BRA -47.92 -15.93

PAN -57.01 -19.56

AIRS geolocation information

AIRVBRAD data

Geolocation information:

Longitude, Latitude

135 X 90 (=12150)

Vertices sequence:

vertex	2-aim	1-aim
V1	[0,0]	[0]
V2	[134, 0]	[12060]
V3 [[134, 89]	[12149]
V4	[0, 89]	[89]

Performance

CEOP AIRVBRAD subsetter using G-polygon based prescreening Test on 406 granules of 2007.08.20, 21, 22

Before ---

Use bounding rectangle plus special treatments for dateline/pole crossing granules. Sometimes need to scan all pixels. Found 130 sites covered.

After –

Only need to know lat/lon values of the 4 corners and blindly apply the technique. Treat all ground sites and granules equally. Found 131 sites covered.

Performance - accuracy

Before –

false negative (all marginal):

2007.08.20 #181 PAN

2007.08.21 #074 EIS

2007.08.22 #119 NSA

false positive:

2007.08.21 #160 ES1

2007.08.21 #193 ES1

After ---

No false positive, no false negative.

Performance - efficiency

CEOP AIRVBRAD subsetter using G-polygon based prescreening Test on 406 granules of 2007.08.20, 21, 22 checkSitePos -- function checking if a granule covers any sites Time profiling results:

Before ---

Computer time: 0.36 sec. 0.17 ms/call

After –

Computer time: 0.03 sec. 0.01 ms/call

Over 10 times faster!

- Accurate, reliable and efficient pre-screening method.
- Treats all granules, ground sites equally. Cab be applied blindly as long as 4 corners are in clockwise order.
- Boundaries can be expanded or shrunk to meet users' special requirement on marginal sites. (see the paper)
- Recommended for Matchup PGEs, V6 planning.